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THEORETICAL DETERMINATION OF WATER IDADS ON PITCHING 

HULLS AND SHOCK-MOUNTED  HYDRO-SKIS 

By Emanuel Schnitzer 

A quasi-steady  theory is  developed for  the  unsteady  plane  motion of 
seaplanes  with  high length-beam r a t i o s  and  of shock-mounted hydro-skis 
impacting on a water  surface  while  undergoing  pitching  rotation. This 
theory is based on a dynamic-camber equivalent   in  which a pi tching f l a t  
p l a t e  immersed i n  a stream i s  replaced  instantaneously by a s ta t ionary  
cambered a i r f o i l   f o r  which similar f l u i d   p a r t i c l e   t r a j e c t o r i e s   e x i s t  a t  
the  boundary.  Since  experimental hydrodynamic da ta  were unavailable  for 
ve r i f i ca t ion  of t he  proposed  theory,  comparisons  are made wi th   c lass ica l  
two- and three-dimensional   l inear ized  a i r foi l   theory  for   s teady and 
unsteady submerged motion  and  with a more approximate method t h a t  neg- 
l ec t s   t he   ro t a t iona l   e f f ec t  on the  pressure  dis t r ibut ion.  The agreement 
with  the  two-dimensional  unsteady  oscil lating  airfoil   theory i s  not  very 
good because of the  presence of a large  unsteady  circulation  term  but 
the  three-dimensional  comparisons, which include,  in  addition, some 
o s c i l l a t i n g   a i r f o i l   d a t a  of  aspect  ratio 2, i n d i c a t e   f a i r  agreement. The 
e f fec t  of ro ta t ion  on the   longi tudina l   p ressure   d i s t r ibu t ion  f o r  upward 
pitching is seen  to  broaden  the  stagnation  peak and decrease  the  instan- 
taneous  ratio of maximum t o  average  pressure,  whereas downward pi tching 
i s  seen to   y ie ld   the   oppos i te   resu l t .  From the  eomparison  with t h e  more 
approximate method tha t   neglec ts   ro ta t iona l   e f fec ts  on the  pressure  dis-  
t r ibu t ion ,  it is deduced t h a t   t h e   e f f e c t s  of ro t a t ion  might  be  important 
f o r  same practical  narrow-hull  impacts  but  the more approximate  theory 
could  be  used  for  the  trimming shock-mounted hydro-ski  cases  considered. 
The loads predicted by the  proposed  theory  for  the trimming shock-mounted 
hydro-ski are less  than  those  for  the  fixed-trim  hydro-ski. The proposed 
theory  might  also  be  usef’ul  for  calculations  for a low-aspect-ratio 
pitching  hydrofoil.  Applications of a cambered a i r f o i l   t h e o r y   t o   t h e  
determination of water-pressure  distributions on hul ls   with  pul led up 
bows are   indicated.  Appendixes containing  exact   solut ions  for   the  pres-  
sure   d i s t r ibu t ion ,  load, and moment on a cambered a i r f o i l  immersed i n  a 
stream at  a f in i t e   ang le  of attack  are  included.  Step-by-step computa- 
tional  procedures  with  data-sheet  headings  for  application  of  the  proposed 
theory  to   seaplane  hul ls   wi th  high length-beam r a t i o s  and shock-mounted 
hydro-skis  impacting on a water surface and involving  rotat ion  in   pi tch 
are  also  given  in  an  appendix. 
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INTRODUCTION 

This paper is concerned  principally  with  the  theoretical  determina- 
t i o n  of t he  hydrodynamic loads a d  motions  experienced  by shock-mounted 
hydro-ski-equipped aircraf t ,   seaplanes  with  high length-beam ra t io s ,  and 
other  relatively  narrow  bodies  undergoing  unsteady  planing  motion on a 
water  surface and involving  pitching  rotation. Although a water-impact 
theory   for   the   f ree ly  trimming  wide float  has  been  developed, it is  not 
believed  that  such a theory  can  be  extended t o  cover  the narrow-body case. 
Also,  although much information is available f o r   t h e   o s c i l l a t i n g   a i r f o i l  
covering a fairly complete  range of aspect   ra t ios  from 0 t o  00, most of 
these  theories  are only appl icable   for  small o sc i l l a t ions  a t  small angles 
of a t tack.  They a re   fu r the r   r e s t r i c t ed   t o   deep ly  immersed bodies,  whereas 
a hydro-ski o r  seaplane m a y  have  only  the  lower  surface  wetted.  Another 
l imi t a t ion   t o   t he   u se  of t he   o sc i l l a t ing   a i r fo i l   t heo ry   fo r   uns t eady  
planing on water  arises  because  the wing-chord is constant,  whereas  the 
hydro-ski  or  flying-boat-hull  wetted  length is  continually  changing. 
Modifications  of  such  airfoil   theory  to  cover  the hydrodynamic case have 
been made by  Glauert and Perring ( ref .  1) to  take  into  account   the sur- 
face of discont inui ty  and by Sedov ( r e f .  2 )  to   inc lude   var iab le  body 
shape and a changing  wetted  length. 

In  order  to  apply  Sedov's method t o  nonharmonic motions  such as 
water  impacts,  Fourier  series  solutions may be made. Such solut ions  are  
allowable  since  linearizing  assumptions have  been  incorporated i n   t h e  
derivation.  Since, however, hydro-skis  operate at relatively  high  angles 
of at tack, it is  possible   that   such  l inear izat ions may not  lead  to  reason- 
able  approximations  for  actual  operating  conditions.  This i s  one of t h e  
main reasons  that   these methods  were not   ut i l ized  in   the  present   paper .  

I n  order   to   obtain  solut ions  to   the  unsteady  planing problem appli-  
cable   for   pract ical   angles  of attack, an  approximate dynamic-camber theory 
has  been  developed  instead  for  the  pressure  distribution on pi tching 
bodies  during  water  impact. The purposes  of th i s   paper   a re   to   p resent  
this   theory,  t o  corroborate i t s  accuracy  insofar as possible,  and t o  apply 
th i s   theory  and a more approximate  version  thereof to   so lv ing  trimming 
h u l l  and hydro-ski  impact  problems. The proposed dynamic-camber theory 
is based on the  premise  that  a pi tching f l a t  plate  deeply immersed i n  a 
stream may be  replaced  instantaneously by a s ta t ionary  cambered a i r f o i l  
f o r  which similar f low  par t ic le   t ra jec tor ies   ex is t  at the  boundary. It 
is believed  allowable  to  apply  this  type of a i r fo i l   t heo ry ,  where the  
e n t i r e   f o i l  i s  deeply immersed, t o   t h e  hydrodynamic case where only  the 
lower surface may be immersed i n   f l u i d ,  on the   bas i s  of Herbert Wagner's 
demonstration  (ref. 3) tha t   the   longi tudina l   p ressure   d i s t r ibu t ion  on 
the  underside  of a wing i s  very similar t o   t h a t  on the  underside of a 
planing  plate .  The c l a s s i c a l  cambered a i r fo i l   t heo ry  is extended  herein 
to  include  high  angles of a t tack  and f i n i t e  cambers,  which, when in te r -  
p re t ed   i n  terms of the   p i tch ing  f lat  plate ,   are   equivalent   to   appreciable  
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angular  velocities  at  high  trims.  This  equivalence  comes  from  the  quasi- 
steady  adjustment  of  the  airfoil  camber  at  each  instant  to  conform  approx- 
imately  to  the  instantaneous  path  lines  of  the  particles  moving  along  the 
rotating  flat  plate.  Aspect-ratio  corrections  are  applied  to  modif’y  the 
pressure  distributions  for  three-dimensional  flow  about  the  cambered 
airfoil. 

In  this  paper  an  approximate  theory  for  unsteady  motion  with  rota- 
tion  in  pitch is first  developed  and  compared  with  other  theories  and 
experimental  data  for  oscillating  wings.  The load and  motion  equations 
for  pitching hulls and  hydro-skis  are  then  developed  and  presented  along 
with  solutions  for  a  few  example  cases.  Several  appendixes  which  are 
utilized  in  connection  with  the  development  of  the  theory  and  which  pre- 
sent  computational  procedures  for  making  solutions  of  pitching-hull  and 
shock-mounted  hydro-ski  problems  are  included. 

SYMBOLS 

aerodynamic  aspect  ratio 

ratio  of  average  pressure  in  transverse  plane  to  longitudinal 
center-line  pressure  in  plane 

beam  of  body 

center-of-pressure  coefficient  relative  to  step, - MS 

FNhwb 

three-dimensional  lift  coefficient, - L 
psu2 2 

section  lift  coefficient, - L/b 
8 cu2 

three-dimensional  moment  coefficient, M or M 
g scu 2 $ h , b U  2 3 2  

section  .moment  coefficient, or M/b 

c2u2 Av%2u2 
2 2 

three-dimensional  hydrodynamic-force  coefficient, FN 
2 &b?J2 
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CN 

CA 

F 

f 

G 

G’ 

h 

I 

J 

K 

k 

i = FI 
L 

2 

2w 

sec t ion  hydrodynamic-force coeff ic ient ,  %Ib e hwbU 
2 

2 

beam loading  coefficient,  - W 
Pgb3 

wing chord 

aerodynamic drag   force ,   pos i t ive   in  aft d i rec t ion  

damping exponent 

distance  along ski between pivot  and s tep  or   a long  hul l  between 
center of gravi ty  and s tep  measured pa ra l l e l   t o   kee l ,   pos i t i ve  
when measured af t  ( s e e   f i g  . 5 ) 

force   t aken   pos i t ive   in  upward or  af t  d i r ec t ion  

function 

damping constant, strut compression 

d-amping constant, strut extension 

accelerat ion due t o   g r a v i t y  

coef f ic ien t   in   Blas ius   so lu t ion  

half   height of cambered f o i l  at m a x i m u m  poin t   ( see   f ig .  2 )  

pi tching moment of i n e r t i a  of trimming body 

dis tance between kee l  and center of gravi ty  measured  normal t o  
kee l   ( s ee   f i g .   > (a ) )  

spring  force  coefficient 

reduced-frequency  parameter, C C O / ~ U  

aerodynamic lift force ,   pos i t ive   in  upward d i rec t ion  

length of body  below undisturbed  water  surface  (see  f ig.  5) 

length of body below  elevated  water  surface  (see  fig. 5 )  
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R 
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U 

U 

v 
V 

W 

W 

x1 

X 

Y l  

Z 

z = x +  

pi tching moment, considered  posit ive  in a nose-up d i rec t ion  

distance  along  hydro-ski between pivot and shock-strut  attachment 

f luid  pressure 

resu l tan t   ve loc i ty  of f lu id ,  

longi tudinal   d is tance between s tep  o r  t r a i l i n g  edge and center 
of pressure  (see  f ig .  3 )  

r e a l   p a r t  of 

wing plan-form area 

time 

free-stream  velocity a t  i n f in i ty   fo r   s t a t iona ry  body, and 
equivalent  forward  velocity & + - z i   f o r  moving  body 

t an  7 

veloc i ty  of f lu id   in   X-di rec t ion  

resultant  velocity  of  impacting body 

ve loc i ty  of f lu id   in   Y-di rec t ion  

weight of a i rcraf t   supported by each  hydro-ski o r  h u l l  

complex po ten t i a l  

horizontal  displacement  for  determination  of  equivalent camber 

forward  displacement  of  impacting body 

vertical  displacement  for  determination  of  equivalent camber 

d r a f t  or downward displacement  of body normal to  undisturbed 
water surf ace 

z' = x' + iy '  coordinate axes systems for conformal  transformations 

z" = x" + i y "  
(see f i g .  2) 
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i nc l ina t ion  of stream flow t o  chord  of a i r f o i l   ( a n g l e  of a t t ack )  

instantaneous  circulation 

f l ight-path angle 

angle  defining  effective camber, - or  $, radians 

veloci ty   of   hul l  or hydro-ski  normal to   kee l ,   pos i t i ve  downward 

argument  of Z" 

approach  parameter  for  free-body  landing, sin (COS 7 f 7 

i h b  
2u 

s i n  y 0 
0 )  

length of f l o a t  or hydro-ski  below  undisturbed water surface 
divided  by mean  beam 

length  of   f loat  or ski below elevated water  surface  divided by 
mean  beam 

longitudinal  distance  along 'chord or kee l  measured from t r a i l i n g  
edge, positive  forward 

mass densi ty   of   f luid 

t r i m  of s k i  or hull  re la t ive  to   undis turbed  water   surface,  
p o s i t i v e   i n  nose-up d i rec t ion  

phase  angle  between  angle-of-attack  vector and l i f t  vector, 
pos i t ive  when angle-of-attack  vector is leading 

phase  angle  between  angle-of-attack  vector and moment vector,  
pos i t ive  when angle-of-attack  vector is leading 

aspect-rat io   correct ion 

circular  frequency of o sc i l l a t ion  

Subscripts: 

a a t  p ivot   ( see   f ig .  5(b) ) 

a' a t  connection  point  of  shock strut t o  ski (see   f ig .  5(b ) ) 

e effect ive  value 

g gravi ty  
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LE 

N 

n 

0 

P 

r 

S 

X 

U 

0,1,2,. . . 
P 

0 

m 

A bar 

about  leading edge 

hydrodynamic  normal 

point number 

a t   contac t  

aerodynamic pitching 

hydrody-namic afterbody 

about  step 

extrapolated  quantity 

der ivat ive  with  respect   to  u 

successive  terms  in a se r ies  

about  origin  (located below midchord) (see Z-plane i n   f i g .  2 )  

maximum value 

i n f i n i t y  

over a symbol means tha t   t he  symbol pe r t a ins   t o   t he  mass 
center of the trimming body or t o   t h e  complex conjugate i n  appendixes A 
and B. An aster isk  denotes   that   rotat ional   effects  have been  included. 
Dots over symbols denote  the  derivatives  with  respect  to  time. 

DENEIDPMEXT OF THEDRY FOR U N ' S W Y  MOTION 

W I T H  ROTATION I N  PITCH 

Concepts of Approach 

In  order  to  develop an approximate  theory for the  oblique impact 
or unsteady  planing of a r e l a t ive ly  narrow pitching body  on a water- 
surface,  the  following  reasoning was applied.   First ,   for  the  simplified 
case of oblique impact at fixed  trim, it has  been shown i n  previous 
hydro-amic publications  that   this  case can  be  replaced at each ins tan t  
by  an equivalent  planing  case  for which a similar load d is t r ibu t ion  
ex is t s .  The c r i t e r ion   fo r   t h i s   s imi l a r i t y  was found to   be   tha t   the   hor i -  
zontal   veloci ty  U of the forward in te rsec t ion   l ine  of t he  body with  the 
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water surface must be equal  for  both  cases.  This is  demonstrated i n  
the  following  sketches: 

Fixed-trim  impact  Equivalent  planing 

The e f f ec t s  of pi tching  rotat ion which are also  taken  into  account 
in  the  present  paper  can be divided  into two pa r t s .  The first p a r t  i s  
the  effect   of the  ro ta t iona l   ve loc i ty   in   modiwing   the   e f fec t ive   p lan ing  
veloci ty  as i l l u s t r a t e d  by the  following  sketches: 

Trimming impact  Equivalent  planing  (first  approximating  step) 

The second p a r t  of t he   ro t a t iona l   e f f ec t  i s  the  modification of the  longi- 
t ud ina l   d i s t r ibu t ion  of load or  pressure  caused by the influence of body 
ro ta t ion  on the f low  f ie ld .  Although t h i s  second e f f ec t  might  be  handled 
by   c lass ica l   osc i l la t ing   a i r fo i l   theory ,  the two-dimensional  theory does 
not  apply  for  low-aspect-ratio  bodies and the available  low-aspect-ratio 
theory i s  not  believed t o  give  closed-form  solutions.  Therefore, a quasi- 
steady  approximation was developed  based on the  premise that the   e f f ec t  
of pi tching  rotat ion on a f l a t  plate  could be obtained from an instanta-  
neously  equivalent cambered a i r fo i l   p l an ing  on a water  surface as shown 
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i n  the following  sketches: 

3 
Z 

Trimming impact 

. . 

9 

Equivalent  planing  (second  approximating  step) 

The degree of camber 2h i n  the rightehand  sketch,  of  course,  depends on 
the  pi tching  veloci ty .  

The development and t e s t i n g  of this dynamic-camber concept is organ- 
ized  as  follows.  First ,   the cambered form i s  derived as the  quasi-steady 
equivalent  of the pi tching wing. Then, the longitudinal  pressure distri-  
bution is  determined  for the e n t i r e  cambered form i n  deeply submerged flow 
and f o r  a planing form with only  the  bottom  side  wetted. The appl icat ion 
t o  water loads on pulled-up bows is  indicated  in  passing. In  o r d e r   t o  
ver i fy   the  pressure  dis t r ibut ions,  loads and moments are   obtained  for   the 
cambered form undergoing  steady  motion and are  compared with l inear ized  
theory. The proposed dynamic-camber equations  for  the  pitching wing a re  
presented and t e s t ed  at the  zero-trim end poin t   aga ins t   c lass ica l  two- 
and three-dimensional  linearized  airfoil  theory  for  unsteady  motion and 
with low-aspect-rat io   osci l la t ing  a i r foi l  data after incorporating the 
required  aspect-ratio  corrections  into  the  proposed  theory. 

Derivation  of Cambered Form as Quasi-Steady  Equivalent 

of Pi tching Wing 

A simple  quasi-steady  theory  for  approximating the flow  about a 
pitching  two-dimensional  f lat-plate wing mqf be derived on the  assumption 
that f o r  relatively slow  rotation the boundary for   the   p i tch ing  wing m a y  
be replaced at each in s t an t  by a d i f f e ren t  fixed-cambered  boundary f o r  
which similar pa r t i c l e   t r a j ec to r i e s   ex i s t   a long  the surface. Thus, t h e  
pa th   l ines   t raced  by these  par t ic les   during any small time i n t e r v a l  would 
be similar for  both  cases.  The fixed boundary is then  defined  by  the 
motion of the pa r t i c l e s   du r ing   t h i s  small time in te rva l   a long   the  f la t  
surface of t h e   p l a t e  which is ro ta t ing  at some instantaneous  angular 
ve loc i ty  c i  i n  a f i e l d  of  flow  having a mean t r ans l a t iona l   ve loc i ty  U. 
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In   order   to   determine  the form of t h i s   f i x e d  boundary, f igure  l ( a )  which 
shows a sec t iona l  view of the   ro t a t ing   p l a t e  i s  introduced. From t h i s  
f igure  the  incremental   hor izontal   d is tance  t raversed  by a p a r t i c e l  moving 
a long   the   sur face   in   the   t ime  d t  i s  

axl = u a t  

I n   t h e  same t i m e  interval   the   plate   has   rotated  through  the  angle   da.  
The approximate downwash ve loc i t i e s  of t h e   p a r t i c l e  as it moves from t h e  
point  x1 t o   t h e   p o i n t  x1 + dxl are given  respectively by the  equations 

*l = -ua - xl& 

i, + a$, = -u(a + da) - ( x 1  + &da  J 
The incremental change i n  downwash velocity  expressed  by  should  be 
iden t i ca l  t o  t h a t   f o r  a p a r t i c l e  moving along  the  hypothetical   f ixed- 
cambered boundary ( f i g .  l ( b ) )  f o r  which the  dovnwash veloci ty  a t  
points  x1 and x1 + dxl are ,   pespect ively,   wri t ten 

Therefore,  equating  the change i n  downwash Gl fo r   bo th   t he   ro t a t ing  
p l a t e  and the   s ta t ionary  cambered p l a t e  and  making use of equation (1) 
leads  to   the  expression 

= U d - -2% d t  Q1= 
&l 

Equation (4)  can  be  integrated  twice  with  respect  to xl, a f te r   aga in  
making use of equation (l), to   y ie ld   the   shape  of the  equivalent   s ta t ionary 
cambered a i r f o i l  yl = f(xl) which i s  described  by  the  equation 

. 2  

U 
axl y1 = -ax1 - - 
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Equation ( 5 )  may be   res ta ted   in  nondimensional 
half  chord  c/2 

where, fo r  convenience, &c 2U is designated 
t i on  is  shown i n   f i g u r e  l (b  fo r  a = 10' and 

11 

form by dividing by the 

6.  A p lo t  of t h i s  equa- 
6 = 0.1. which are  believed 

t o  be  real is t ic   condi t ions  for   the trimming  high-length-beam-ratio  sea- 
plane and for   the  shock-mounted trimming  hydro-ski. If equation (6) is 

X 
evaluated at the  points  = 21 (the  leading and t r a i l i n g  edges 

cambered a i r f o i l ) ,  it is  found t h a t  
G 

. 

s o  tha t   i n   f i gu re  l (b  ) the  angles A x  = b are  seen  to  define  the 
t ionary cambered form.  Therefore 6 = k/2U can  be  thought of as 
effective  instantaneous dynamic camber o f  a f l a t   p l a t e  of chord  c 
t ing   a t   angular   ve loc i ty  c i  i n  a  stream  flowing with veloci ty  U. 

Equation (6) is seen to   represent   a   parabol ic   arc   a t  an angle 
attack a t o  the stream. It w i l l  be assumed f o r  convenience tha t  

of the  

s t a -  
an 
rota- 

of 
a c i r -  

cular  arc w i l l  approximate  equations ( 5 )  or (6) t o  a reasonable  degree i n  
this paper   for   appl icat ion  to   calculat ions  for   pract ical   hul l   or  hydro- 
ski-equipped  seaplanes. This is permitted  since  the m a x i m u m  deviation 
between equation (6)  and a   c i rcular   arc  drawn through  the  origin and end 
points of the example a i r f o i l  of f igure l ( b )  i s  of the  order of 0 .OOlc. 

Longitudinal  Pressure  Distribution on Equivalent 

Circular-Arc  Airfoil 

In order   to  .make solut ions  for   the trimming p l a t e  it i s  first neces- 
sa ry   to   ob ta in   the   po ten t ia l   so lu t ion   for   the  two-dimensional  flow  about 
the  instantaneously  equivalent  circular-arc  airfoil  at f in i te   angle  of 
attack. This derivation is  presented as appendix A and is  an extension 
of the  exact  solution  for a c i r c u l a r - a r c   a i r f o i l   a t  0' angle of a t tack  
given i n  an appendix of reference 4. The solution  presented  herein is 
based on the  transformation of t h e   c i r c l e   i n   t h e  Z"-plane ( see   f i g .  2) 
into  the  off-center  circle  in  the  Z'-plane which is then  converted  into 
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t h e   c i r c u l a r - a r c   a i r f o i l   i n   t h e  Z-plane  by a Joukowski transform. The 
derivation was required  since  the  pressure  distribution on the  lower sur= 
face of t he   p l a t e  must be known $na it is  not  available from published 
th in   a i r fo i l   t heo ry .  In  addition,  since  large  negative  pressures  are  not 
be l ieved   to   ex is t   in   the   reg ion  of the  forward  water  line,  the  concept of 
an  effective  length  or chord Ce which extends  from  the  rear of the air- 
f o i l  forward to   t he   po in t  of zero  pressure  immediately ahead of the  stagna- 
t ion  point  w i l l  be  applied. As  s ta ted   in   the   in t roduct ion ,   jus t i f ica t ion  
fo r   u t i l i z ing   t he  lower surface  pressure from the  flow  about a completely 
submerged body to   represent   the  f low about a  body planing on a surface  of 
discontinuity was given by Wagner. This mater ia l  i s  presented  in  f igure 24 
of reference 3 which presents a  comparison  of t he  immersed and planing 
cases up to   re la t ive ly   h igh  trims. The agreement  appears  exceptional. 

In   f igure 3 are  presented  plots of equations (A24-) and (A26) of 
appendix A showing the  var ia t ion,  with f rac t iona l   e f fec t ive  chord s/ce 

of f lu id   p re s su re   r a t io  on the lower surface o f  two-dimensional p 
cambered p la tes .  Here 2; is defined  as  the  distance frm t h e   t r a i l i n g  
edge  measured forward  along  the  chord and the  pressure  ra t io  i s  defined 
as  the  pressure  at  a poiilt  divided by the  stagnation  pressure due t o   t h e  
forward  velocity. A wide range  of trims and cambers a re  covered in   t hese  
plots.   Inspection of these  pressure  diagrams  leads t o  the following two 
s ignif icant   points  on the  behavior of a trimming hu l l   o r  hydro-ski.  Rela- 
t ive   to   the   f ixed- t r im body, the  effect  of ro t a t ion  which is a function 
o f  8 can  be  observed  as a decrease  in midchord pressure  for downward 
trimming (-6 ) which should shift  the  center of pressure  forward, and an 
increase  in midchord pressure  for upward trimming ( 8 )  which should s h i f t  
the  center of pressure af t .  The e f f ec t  of increasing  angle of a t tack is  
t o  broaden the  stagnation peak and decrease  the  instantaneous  ratio of 
maximum pressure  to  average  pressure  while a decreasing  angle of a t tack 
yields   the  opposi te   resul t .  This ef fec t  m a y  be s igni f icant   for  hulls 
having large bottom  panels which might  be  designed  stronger t o  withstand 
higher  average  pressures  during upward pitching or having small bottom 
panels which might have t o  be  stronger t o  take  the  high  local   pressures   in  
downward pitching. The e f fec ts  of ro ta t ion  on pressure  dis t r ibut ion m a y  
also  be  derived from c lass ica l   l inear ized   osc i l la t ing  wing theory of 
reference 5 .  

Application of Pressure  Distributions on  Cambered 

A i r f o i l s   t o  Rulls o r  Wdro-skis Having 

Longitudinally Curved Bows 

As  stated  previously,   f igure 3 presents  longitudinal  pressure  distri-  
butions which may be  directly  applied  in  accordance  with dynamic-camber 
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concepts t o   ca l cu la t ion  of loads and motions of pi tching  hul ls  and hydro- 
skis w i t h  rectangular, f l a t  bottoms. These pressure  dis t r ibut ions may 
a l s o  be   used   d i rec t ly   for   s t ra ight   hu l l s  and hydro-skis  having  curved-up 
bows during  fixed-trim  impact  or  planing on a water surface.   In  order 
t o  take into  account the e f f ec t  of  aspect  ratio f o r  bo th  of these  cases 
however, a method which was devised  in  reference 6 i s  used. This method 
i s  d e s c r i b e d   i n   d e t a i l   i n  a subsequent  section of t h i s  paper. When the 
p l o t s  of f igure 3 are appl ied   to  bows of small upward curvature, the 
e n t i r e  body m a y  be  considered t o   b e  curved  longitudinally, the wetted 
chord  extending  from  the step t o  the bow-water-air intersection.  For 
large bow curvature,  the body may be  broken up in to  two lengths ,   s t ra ight  
and curved. The wetted chord of t he  bow arc  extends from the  forward 
edge  of t he   s t r a igh t   s ec t ion   t o   t he  bow-water-air intersection.  For t h i s  
case,   the   overal l   longi tudinal   pressure  dis t r ibut ion is m a d e  up of the 
pressure  distribution  for  the  curved  section (6 f i n i t e )   f o r   t h e  bow 
region and the   d i s t r ibu t ion   for   the   s t ra ight   sec t ion   where in  the whole 
body is assumed t o  be f l a t  (6 = 0) .  The forward part of t he   d i s t r ibu t ion  
f o r  6 = 0 extending  over  the curved-bow region i s  thrown away, the 
d i s t r ibu t ion   fo r  6 f i n i t e   u t i l i z e d   i n  i t s  place, and su i t ab le   f a i r ing  
of the pressure  curve a t  the body inf lect ion  point  is employed. The 
normal-force  coefficients  required  in  applying  the  aspect-ratio  correction 
may be  determined from planing data obtained with the model in  question 
or  as a  very  rough  approximation  from  the  normal-force  coefficients  for 
the   f la t -p la te   case  where the equivalent f l a t  p l a t e  might possibly be 
represented by the  wetted  chord from t h e   s t e p   t o   t h e  bow-water-air i n t e r -  
sect ion.  The trim of t h i s  chord l i n e  is the trim used in  obtaining  theo- 
retical  or  experimental  normal-force  coefficients  for the f la t -plate   case.  

hads and Moments on Cambered Ai r fo i l  

Ln orde r   t o   ve r i fy   pa r t i a l ly   t he   t heo re t i ca l   p re s su re   d i s t r ibu t ions  
f o r  a cambered a i r f o i l   i n   d e e p l y  immersed flow as given  in  appendix A, 
t he  loads and moments obtained  by  integration  of the pressure  equations 
f o r  small trims might be compared wi th  c lass ica l   l inear ized   th in-a i r fo i l  
theory.   Direct  integration of the proposed  parametric  pressure equa- 
t i ons  (A24) and ( ~ 2 6 )   i n  appendix A i n   o rde r   t o   ob ta in  the loads and 
moments, however, appeared t o  be  inconvenient so the method of Blasius 
( r e f s .  7 o r  8) was used. Appendix B presents   th i s   so lu t ion .  

The two-dimensional l i f t  coef f ic ien t   about   the   c i rcu lar -a rc   a i r fo i l  
fo r   f i n i t e   ang le s  of a t t ack  is derived  according t o  the method of  Blasius 
i n  appendix B and is  given as equation  (Bl7).  This  equation is repeated 
here  for  convenience 

CZ-" - L'b - 2rc(sin a cos a. + cos*a tan  6) 
- cu P 2  
2 



which, f o r  small angles of a t tack and camber, reduces t o  the  l inear ized 
equat ion  for   the  thin  a i r foi l   (eq.  10.8, ch. 11, r e f .  9) 

cz = 2*(a + 49 

where 4: = t an  6 is a measure of the camber as shown in   f igure   2  of 

the  present  paper. The upward  trimming-moment coefficient  about  the 
leading edge f o r   f i n i t e  trims derived  in appendix B as equation ( ~ 2 6 )  is 

%,LE = ML=-T[ C 5 J 2  sin a cos a + t an  6 ( 1  + cos a '1 (10) 
2 cos% 

which for  small  angles  reduces  to 

which i s  the same as  the  linearized  equation for t h e   t h i n   a i r f o i l  
(eq. 10.8, ch. 11, r e f .  9) except  for  the minus sign  in  equation (11) 
which ar i ses  from opposite  positive moment conventions  between t h i s  paper 
and reference 9. 

Camparison of Eynamic-Camber Equations With 

Two- and Three-Dimensional  Unsteady Linearized  Airfoil  Theory 

It was  shown previously that the  angular  velocity of  an a i r f o i l  i n  
plane  motion  involving  pitching  rotation  could  be  expressed  as an equiv- 
a len t  dynamic  camber defined  herein as 6 = &/2U where 6 = tan'l 

for   the  equivalent   s ta t ionary  a i r foi l .  If in  equation (9) i s  con- 

sidered  according t o  t h i s  dynamic-camber concept and &/2U is subst i tuted 
i n  i t s  place,  then  equation (9) can be  considered  as  a  linearized  approxi- 
mation t o   t h e  two-dimensional  rotational  case  for a f la t   p la te .   S ince  
comparisons are  t o  be made in   t h i s   s ec t ion  wi th  l inearized  theory where a 
approaches  zero,  the  proposed  theory w i l l  be   a l tered similarly for t h i s  
comparison with the   r e su l t   t ha t   t an  8 approaches 6. Equation (9 ) can 
therefore  be  rewritten  as  follows 

cz*  = 2R(U + 6)  = 2R a + - ( 3 
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where the  as ter isk  denotes   the added rotat ional   effects .   Rotat ion is  
assumed t o  occur  about  the  center  of  the wing chord;  hence, l i f t  forces 
due t o  acceleration of t h e   v i r t u a l  mass are  assumed t o  be  nonexistent. 
The equat ion  for   the moment coeff ic ient ,  on the  other  hand, should  include 
a v i r t u a l  mass torque which ac t s   i n   t he   d i r ec t ion  opposing the  angular 
acceleration and has the  form - - rtc2;11. (See  ref. 5. ) Thus the  equation 

for   the  two-dimensional moment coefficient  about  the  origin  including  the 
e f fec ts   o f   ro ta t ion  m a y  be   wri t ten 

64u2 

I n  this   equat ion  the C!L term drops  out  because of symmetry about t h e  
or ig in  or midchord. This term  appeared as the  second  term on t h e   r i g h t  
s ide  of  equation (11) as - 4 ~ ~ .  h 

A simple  comparison  between the   l inear ized  dynamic-camber equations 
(eqs. ( 1 2 )  and (13) ) and the   l i nea r i zed   t heo ry   fo r   t he   o sc i l l a t ing   a i r fo i l  
( r e f .  3)  can  be m a d e  for   the  case of a f l a t - p l a t e   a i r f o i l  a t  0' angle  of 
a t tack  exhibi t ing small s inusoida l   osc i l la t ions   in   a t t i tude   whi le  immersed 
i n  a streaming  f luid.  For this  case  the  instantaneous  angle of a t t ack  may 
be  expressed 

where Q r e f e r s   t o   t h e  maximum value, i is the  camplex imaginary 
indicator  p, w i s  the  circular  frequency of osc i l la t ion ,  and t is 
the  time. The instantaneous  angular  velocity and acceleration are there- 
fore,   respectively,  

Thus equation (12) may be  res ta ted as 

cz* = 2 4 3  + e) 2u 
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and, i f  m/2U is  designated k, the  reduced-frequency  parameter  of 
reference 5 ,  this equation becomes 

* ,/2 i(cnt+tan'lk) 
" cz  - 2 1 + k  e 
flaa 

The comparable equation of Theodorsen ( r e f .  5 )  is 

i(cut+tan- 1 k+kF'+2G) 
" "* - ((2F - + (k t. kF + 2G)2 e 2F-kG (19) 
aaa 

f o r  which the F and G functions have been  evaluated and p l o t t e d   i n  
reference 5 .  (These  functions  are  not  defined  in  the  present  paper.) 
The amplitude of the  l i f t  vector of equation (18) is compared with that 
of equation (19) i n   f i g u r e  &(a) while  the  phase  angles  by which the l i f t  
leads  the  instantaneous  angle of a t tack  are  compared in   f igure  4(b) .  
In   f igure 4(a), considerable  disagreement i s  shown between the proposed 
theory and that  of reference 5 for   calculat ing  the magnitude of the lift 
vectors   for   the  inf ini te-aspect-rat io   case.  Most of t h i s  discrepancy is 
be l ieved   to   a r i se  from the omission of certain  frequency-sensitive  circu- 
lation  terms from equation (18) which a re   t o   be  found i n  equation (19). 
The phase  angles in   f i gu re  4(b)  do not seem t o  be  affected  as  severely. 

The  moment coefficient  equation  about  the  origin may be  derived  in 
a similar manner  and is s ta ted  

whereas the comparable  Theodorsen equation is 

where as  before,  the F and G f'unctions are those which  were tabulated 
in  reference 5 .  The amplitude of the moment vector of equation (X) )  is 
compared with that  of equation  (21)  in  f igure 4( c )  and the  phase  angles 
by which the moment leads  the  instantaneous  angle of a t tack   a re  compared 
in   f i gu re   4 (d ) .  The disagreement between the moment vectors   for   the 
infinite-aspect-ratio  case i s  similar in   na ture  and magnitude with t h a t  
of the l i f t  vectors. The dynamic-camber system predicts  no phase 
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difference between the  moment vector and instantaneous  angle  of  attack, 
whereas the  exact  theory shows a lagging  phase  angle. From these compar- 
isons, it i s  concluded tha t  t he  proposed  theory  should  be  used with 
caution  for  pitching  bodies of large  aspect   ra t io .  

A be t t e r   p i c tu re  i s  presented  for  the  case of low-aspect-ratio  bodies 
which are the  primary  consideration  in this paper. The dynamic-camber 
l i f t  equation (12) may be  fur ther   modif ied  to   include  the  effects   of  
aspect   ra t io  by assuming that  both  the  term  proport ional   to   angle  of 
a t tack  and the term  proportional  to  angular  velocity  of  the  airfoil  are 
a f fdc ted   in  a similar wqy by three-dimensional  flow. On t h e  basis of 
this  assumption  and u t i l i z i n g  Helmbold's a i r fo i l   aspec t - ra t io   cor rec t ion  
for   zero sweep angle (refs. 10 and 11) , equation (18) becomes 

The aspect-ratio  correction T(A)  = 

accurate   for  a l l  aspect   ra t ios   greater   than 1. Equation (22) is p lo t t ed  
i n  figure 4 (a )  along with data obtained  with an osc i l l a t ing   f l a t -p l a t e  
a i r f o i l  of   aspect   ra t io  2 (ref. l2). The three-dimensional  linearized 
theory  of  reference 13 i s  a l so   p lo t ted   for  comparison. The agreement 
seems fa i r  and probably  indicates t h a t  the  par t icular   c i rculat ion  term 
which was s o  affected by  frequency  for the infinite-span  case is probably 
small f o r  the low-aspect-ratio  case. The phase-angle  comparison, p lo t t ed  
in   f igure   4 (b) ,   a l so  shows in   gene ra l  fa i r  agreement f o r   t h e  low-aspect- 
r a t i o  case. 

A is be l ieved   to   be  fairly 
2 4- J4T2 

As regards  the  pitching moment, the Helmbold aspect-ratio  correction 
cannot  generally  be  used  since the shape of the  longi tudinal   pressure 
d i s t r ibu t ion  is  be l ieved   to  depend on aspect ra t io .  Therefore,  for  the 
.moment case, ,   aspect  ratio i s  taken  into  account as follows: The two- 
dimensional 'dynamic-camber moment equation (13) may be  extended t o  the  
three-dimensional  case  by assuming that the  instantaneous  longitudinal 
pressure   d i s t r ibu t ion   for  the three-dimensional  case is the  same as t h a t  
fo r   t he  two-dimensional  case  having the same instantaneous  section lift 
coef f ic ien t  even  though the trims are '   d i f fe ren t   for  the  two cases.  This 
technique was app l i ed   t o  the nonrotating  case  in  reference 6. On t h i s  
basis, the linearized  three-dimensional l i f t  coeff ic ient   for   f ixed att i-  
tude may be  expressed as 
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where cp(A) m a y  be Helmbold's aspect-rat io   correct ion  for   aspect   ra t ios  
greater  than 1. The desired  two-dimensional  section l i f t  coeff ic ient  is 
obtained  by  dividing  the  actual  three-dimensional l i f t  coeff ic ient  by the  
r a t i o  of the  average  pressure  in a transverse  plane  to  the  pressure a t  
the  intersect ion of tha t  plane w i t h  the  longitudinal  center  l ine.   Since 
reference 6 leaves this question open, a choice of Bobyleff 's   coefficient 
( re fs .  14 and 15) has  been made. Therefore, the  desired  section l i f t  
coeff ic ient  may be  expressed as 

giving the proper 
three-dimensional 
correction may be 

is  the  effective  two-dimensional  angle of a t tack  

longi tudinal   center- l ine  pressure  dis t r ibut ion  for   the 
case of angle of a t tack a. The  same aspect-ratio 
used fo r   t he  a term as was used f o r   t h e  a term as 

long  as  the  aspect  ratio exceeds 1. For the  hydro-ski case,  smaller 
aspect  ratios  are  encountered so  t h a t   v i r t u a l  mass terms  might  be modi- 
f ied   for   th ree  dimensions  by a more appropriate  correction  developed by 
Pabst (ref .. 16) from measurements obtained on osci l la t ing  bodies  submerged 
in  water. 

The  moment coefficient  about  the midchord l i n e   f o r  a trimming f l a t -  
p l a t e   a i r f o i l  having an aspect  ratio  greater  than 1 is therefore  obtained 
by  applying  the above technique  to  equation (13) 

Since  the  term  proportional  to a does  not  appear i n   t h e  dynamic- 
camber  moment equation  (eq. (13) ) because of its symmetrical  effect  about 
the  origin o r  moment axis, it is  omitted  here  also. It is  seen from 
equation (25) that ,  for  the  l inearized  case,   the  aspect-ratio  correction 
may be  applied  to  the  section mcanent equation  by  direct  multiplication 
as was done fo r   t he  l i f t  coeff ic ient   in   equat ion  (23) .  For sinusoidal 
oscillations,  equation  (25)  becmes 
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This moment vector is p lo t ted   in   f igure  4( c )  along w i t h  the  data  of 
reference 12 and the Lawrence  and Gerber theory  ( ref .  13). The agree- 
ment a lso seems fair for  the  low-aspect-ratio  case. The phase-angle 
da ta   p lo t ted   in   f igure   4 (d) ,  however, predicts  no phase lag for the  
dynamic-camber equations, whereas the more exact  theory and the  data  do. 

The above  comparisons  appear to   subs tan t ia te   use  of the  dynamic- 
camber concept fo r  approximate calculation of forces and moments  on  low- 
aspect-ratio f la t  p la tes  undergoing pi tching  rotat ion and t rans la t ion  
while submerged i n  an i n f i n i t e   f l u i d .  The extension of these  concepts 
in   the  nonl inear  form to   t he   ca se  of  a pitching body planing on a surface 
of discontinuity i s  made on the   bas i s  of the  previously mentioned simi- 
l a r i t y ,  demonstrated  by Wagner, between the  lower surface  pressure distri-  
butions on the submerged a i r f o i l  and the  planing  plate.  It is  fur ther  
believed  that  this  concept m a y  be  extended t o  include  other body shapes - 
f o r  example, dead r i s e  hulls and skis - a f t e r  making suitable  modifica- 
t ions  to   the  design  plots   presented  in  a subsequent  section of thts   paper .  

MAD AND MOTION  EQUATIONS FOR BODIES UNDERGOING UNSTEADY 

PLANING WITK ROTATION IN PITCH 

General  Considerations 

In order  to  determine  the loads and motions of bodies  undergoing 
combined rotat ion and translation  through a water  surface,  the  concept 
of  an equivalent o r  effective  planing  velocity  established  in  reference 17 
is applied and extended to  include  rotational  effects.   This  velocity U 
is derived with the   a id  of f igure 5 from which it may be  observed tha t  
the  horizontal   velocity of the  keel-level  water-intersection  point  rela- 
t i v e   t o   t h e   s t e p  due t o   r o t a t i o n  is  defined as 

Effective  forward  velocity = - - li 
s i n  T (27)  

The water r i s e  is neglected i n  this calculation f o r  simplicity  since i t s  
ef fec t  is only  noticed  for  short  bodies  as shown in  reference 1-7 but  it 
is  included i n  computations of wetted  area and aspec t   ra t io  as in   r e f e r -  
ence 18. The ef fec t ive  forward veloci ty  of an impacting body r e l a t ive  
to  the  undisturbed  water from t rans la t iona l  motions is 

Effective  forward  velocity = 2 + - i 
t an  7 (28 1 

The effective  forward  velocity of the  keel-level  water-intersection  point 
is obtained  through  the summation in   the   hor izonta l   d i rec t ion  of t he  
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ef fec t ive   ve loc i t ies   der ived  from the  rotat ionalmotion  plus   the  effec-  
t ive   ve loc i t ies   der ived  from the translationalmotions.  Therefore, i f  
equations (27)  and (28) are  combined with  the  equation I = z/sin ii, the 
effective  planing  velocity U of  the  keel-level  water-intersection  point 
with  the  s tep as a reference  point i s  obtained as 

u = k s + - -  43 =ST = 5 - zi 
t a n  T s i n  T 

where is defined as the  downward veloci ty  of t he   hu l l  or hydro-ski 
directed normal to   the   kee l .  The instantaneous  velocity  in cambination 
w i t h  the  instantaneous  values of the dynamic camber 6, the trim T, and 
the  wetted length-beam r a t i o  determine  the load and load dis t r ibu t ion  on 
the  impacting  body  including  rotational  effects. 

The wetted-length-beam r a t i o  h, is determined  by  the  substitution 
into  f igure 6 of h defined  as   the  ra t io  of the  length from s t e p   t o  
keel-level water in t e r sec t ion   t o   t he  beam. This p l o t  is reproduced from 
reference 18 where it was constructed from the   r e su l t s  of a planing-data 
analysis  yielding  the  variation of the bow water r ise   for   a   rectangular  
f l a t   p l a t e .  

The instantaneous  two-dimensional hydrodynamic normal-force coeffi-  

c ien t  cN* = is obtained  for  each  value of instantaneous  trim 
- hWbU P 2 
2 

and dynamic camber 6 = - ihwb 
2u by  graphical  integration of the lower- 

surface  pressure  distributions of f igure 3 .  (The expression ce ii1 t h i s  
f igure i s  replaced by Awb for   the  hydrodynamic case. ) The resu l t ing  
p lo t  is presented  as  figure 7( a ) .  The three-dimensional  instantaneous 
hydrodynamic normal-force  coefficient CN* is Obtained  through the  use 
of the  three-dimensional  correction  plotted  in  figure 8 which was derived 
from experimental  high-speed  planing  data  (ref. 19). For the  endpoints 
of A, = 0 and A, = m, the  theoretical   solutions  given  in  references X) 

and 18, respec t ive ly ,   a re   p lo t ted   in   f igure  8 s o  that  values of l i f t  
coeff ic ient  between the  endpoints and the  experimental length-beam ra t io s  
can  be  estimated.  Since  the same aspect-ratio  correction i s  applied  to 
the  rotat ional  component of the  force as to   t he   t r ans l a t iona l  component 
as in  equation (22),  CN* may be  substi tuted for CN in   the  use of 
f igure 8. Therefore,  the cN* f o r  any trim may be found on the 
A, = 0 curve and $* is  the  value on the  appropriate A, curve a t  
the same t r i m .  (Refer   to   l ine of long  dashes i n   f i g  . 8. ) 
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In order  to  determine  the  center-of-pressure  coefficient  about the 
s tep CEp from which the  instantaneous  pitching moment i s  obtained,  use 
is made of the  effect ive trim concept  mentioned in  the  previous  section. 
This effect ive trim Te is obtained by subst i tut ion of the  longitudinal- 
center-line  normal-force  coefficient CN*/B into  f igure 8. The trim at 
which t h i s  value  intersects   the h, = 0 l ine  i s  the  effect ive two- 
dimensional trim. (Refer t o   l i n e  of short   dashes  in  f ig.  8. ) This trim 
T~ i n  combination wi th  the  value of 6 previously  selected may then  be 
subst i tuted  into  f igure 7(b) to  obtain  the  three-dimensional dynamic- 
camber center-of-pressure  coefficient 

Figure 7(b) was also  obtained from graphical  integration of the  pressure 
d is t r ibu t ions  of f igure 3 .  

The ef fec ts  of l inear  and angular  acceleration of t he   v i r tua l  mass 
are  neglected  in t h i s  analysis  since  these  terms are believed t o  be  small 
for  the  quasi-steady,  low-aspect-ratio  case under consideration. The 
angular  acceleration  term is thought t o  be of the same order of magnitude 
as the  term  for   the  l inear   accelerat ion of t h e   v i r t u a l  mass normal t o   t h e  
keel, which was  shown t o  be small f o r  narrow bodies  fn  reference 18. 

Load and Motion  Equations fo r  Free-to-Trim Body 

lmpacting on a Water Surface 

The complete load and motion  time  histories  for a f ree ly  trimming 
body impacting  through a water  surface may be  determined  by means of 
step-by-step methods of calculation.  Since  the  instantaneous hydrodynamic 
force and moment  may be computed approximately  for any s e t  of instanta- 
neous conditions by means of the dynamic-camber analysis  in  the  previous 
sec t ion   en t i t l ed  "General  Considerations," it is necessary  only t o   r e l a t e  
this force and moment t o   t h e  dynamics of the body to  obtain  the  incremental  
changes in   accelerat ions,   veloci t ies ,  and d ra f t s .  The entire  t lme  histo- 
r i e s  can then  be  synthesized from these  incremental  steps. 

The required load and motion  equations may be s e t  up with  the aid of 
f igure >(a). The hydrodynamic force is assumed to   be  directed normal t o  
the  keel  since  viscous  forces  are  usually small i n  hydrodynamic Sapact or 
high-speed  planing. The force  equation  in  the normal direct ion is therefore 
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If the  aerodynamic l i f t  L, which is taken  normal to   t he   kee l ,  is assumed 
t o  be  equal   to   the normal component of the  weight, L - W cos T is  equal 
t o  zero and these  terms  are  eliminated from equation (31). The force 
equat ion   for   the   d i rec t ion   para l le l  t o  the  keel  is omitted  since  for 
p rac t i ca l  trims a l l  forces   in   th i s   d i rec t ion   a re   negl ig ib le .  

The upward trimming moment about the  center  of gravity is 

CM = FN(r - E) + % + = IT -. . 

Although the moment zr ar i s ing  from the hydrodynamic force on the 
afterbody is  unknown a t  this writing, it is included t o  remind the  reader 
tha t  it i s  an  extremely  important  term i n  m a n y  p rac t i ca l  impacts and can 
only be  neglected  for  portions of the impact  where the moment contributed 
by the  afterbody is  negligible.  If the aerodynamic l i f t  i s  assumed t o  be 
colinear  with  the normal component  of the  weight  force (aerodynamic moment 
equals  zero),  then RP goes t o  zero and t h i s  term is  eliminated from 
equation (32). 

The e f fec t ive  forward velocity of the  keel-level-water  intersection 
i n  space may be  obtained  in a manner s i m i l a r   t o   t h a t  used in   der iving 
equation (29) by vec tor ia l ly  adding the   e f fec t ive  forward veloci ty  due t o  
t rans la t ion  of the  center  of gravi ty   to   the  effect ive forward velocity 
due t o  ro ta t ion  of t h e   h u l l  about the  center  of gravity.  The resu l t ing  
equation is  

- 
U =  5 + ( E  - 2 ) i  

s i n  T 

- 
where 5 is  obtained from integration of equation (31) and i from 
integration of equation (32). 

(33 1 

The d r a f t  of the  s tep zs is  obtained from the  vector  addition of 
the  vertical   displacement of the  center of gravi ty  and the   ve r t i ca l  dis- 
placement of the   s tep   re la t ive   to   the   cen ter  of gravity and m8y be 
expressed  as 

zs = ?i + E(sin T - s i n  ‘r0) + J(c0s T - cos -r0) (34) 

where the  subscript  0 denotes  the  instant of contact between the  water 
and the hul l .  A suggested  step-by-step  computational  procedure f o r  
obtaining  the load and motion tFme h is tor ies  which u t i l i z e s   t h e  above 
equations i s  given i n  appendix C. 
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Load and Motion Equations f o r  a "rimming IQdro-Ski Mounted 

on a Shock S t ru t  and Impacting on a Water Surface 

The trimming shock-mounted hydro-ski  case i s  handled i n  a manner 
similar t o  that  for  the  free-to-trim body. The equations of motion a re  
derived with the  aid of f igure ?(b).  The summation  of forces on the 
hydro-ski  normal t o  its keel, i f  the mass and i n e r t i a  of t he   sk i  can  be 
neglected, i s  

where the  forces Fa and Fa' are considered  positive when they  are 
acting upward  on the  fuselage.  The summation  of the  forces on the  fuse- 
lage normal to   t he  hydro-ski  keel i s  

.. 
CF = ( L  - W)COS T + Fa + Far 

.. 

where the assumption is made that  the  a i rcraf t   fuselage does not trim 
during  the  impact, and where Fa is the normal force  appl ied  a t   the  
pivot and Fat i s  the  axial force  applied by the shock s t r u t  which is  
assumed t o  be  alined normal to   t he   kee l   fo r  convenience. The fixed-trim 
assumption  has  been  borne  out by experiments w i t h  hydro-ski equipped air- 
planes which showed l i t t l e  trim change of the  fuselage  during  the immersed 
phase of any given  impact. 

The shock-strut  reaction  Fa'  for  the  general  shock strut with  the 
hydro-ski  pivot  in  front  as  in  figure ?(b) involving damping force  propor- 
t i o n a l   t o   s m e  power  of the  telescoping  velocity and some arbitrary form 
of springing is  

f o r   s t r u t  compression and 

for   s t ru t   ex tens ion  where K is the  spring  force  function which, i n  
general, may depend  on P(T - T ~ )  and in  the  l inear  spring  case  reduces 
to  the  ordinary  spring  constant, G and G' are   the damping coeffi-  
cients,  and d is  the  damping exponent.  For the  case of the  hydro-ski 
pivot  behind  the  shock strut, G is replaced by -G and -G' is 
replaced by G ' .  The value of  P is negat ive  for   this  aft location of 
the  hydro-ski pivot.  
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The upward trimming  mment on the  hydro-ski about  the  pivot (a) m a y  
be  expressed as 

This sum is  equal t o  zero   s ince   the   iner t ia  of t he  hydro-ski was assumed 
to   be  negl igible .  The  moment on the  fuselage must be  equal  to  zero  since 
the  fuselage  does  not trFm even though  fuselage  inertia is f i n i t e .  The 
fuselage moment equation is  not  given  here  since it would serve no usefu l  
purpose i n  view  of the  f ixed-trim  qualification. 

The effect ive forward veloci ty  of the  keel-level-water  intersection 
in  space  given  prevfously as equation (29)  becomes i n  te rns  of the  motions 
about  the  pivot  point  (a) 

u=2a+”+ za ( E  - 2 ) ;  
t an  T s i n  T 

(39 1 

The d r a f t  of the   s tep  is determined  by  vector  addition of t he   ve r t i ca l  
displacement of the  pivot  and the  vertical   displacement of the   s tep   re la -  
t i v e   t o   t h e   p i v o t  and is  expressed as 

zs = Z a  + E s i n  T - s i n  TO) ( 
The veloci ty  of the  point  a (and the   a i rplane)  mqy  be found from inte-  
gration of equation ( 3 6 )  and the  angular veloci ty  and displacement may be 
obtained by integrat ion of equation ( 3 8 ) .  

DISCUSSION OF SAMPLE SOLUTIONS 

In  order  to  demonstrate  the  application of the  dynamic-camber theory 
t o  unsteady  planing  problems,  several sample solutions have  been made for 
chine-immersed impacts. These soluticms have then been compared with 
fur ther   s impl i f ied   theore t ica l   so lu t ions   for  which the   e f fec t  of pitching 
ro ta t ion  on the  pressure  dis t r ibut ion was ignored  by se t t i ng  6 = 0 which 
fo r  low trims is s imi la r   to   the   theory  of reference 21. (When 6 is  set 
equal   to   zero  for  a p i t ch ing   f l a t   p l a t e  impacting  through or planing on a 
water  surface,  the  instantaneous  pressure  distribution on t h i s   p l a t e  i s  
assumed i n  this paper t o  be  the same as   tha t   for  a similar p la te   s tead i ly  
planing on a water  surface  at   the same conditions of trim and d r a f t  at the  
forward velocity 2 which is equal   to   the   e f fec t ive  forward veloci ty  U 
of the  body undergoing  unsteady  motion. Thus, the  theory  for 6 = 0 i s  
termed herein as the   e f fec t ive  forward velocity  theory. ) Compasisons were 
also made with s t i l l  further  simplified  fixed-trim  solutions (+ = 0) from 
reference 18 i n  order t o  demonstrate  the  effect on the  hyarcdynamic 
behavior of ignoring  the trimming  terms. 
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For  simplicity, it has been assumed i n   t h e  sample solut ions that  
bo th   hu l l  forebody and ski bottoms  are  rectangular f l a t  p la tes ,  that  the 
aerodynamic l i f t  is equal  to,   opposite,  and colinear with the  weight, 
and that  the  hul l   af terbody does  not  contact  the water. A computation  by 
t h e  proposed methods f o r  an  actual impact  does  not  have t o   b e   r e s t r i c t e d  
t o  such a high  degree if estimates  of aerodynamic forces,  afterbody water 
loads, and conversion  factors  for  cross-sectional  shapes  other  than the 
f l a t  p l a t e  are avai lable  from theory  or  experiment. 

Free-to-Trim  Hull 

Time-history  solutions  are  presented  in  f igures g(a)  and g(b)   for  
f r ee ly  trimming,  narrow hu l l s ,   r e s t r a ined   i n  yaw, roll, and lateral  
motions,  impacting on a water surface.  (See f i g .  ?(a).  ) The solut ions 
f o r  the v e r t i c a l  and trimming  motions f o r  a moderate beam loading C, = 2, 

where Ca = - are p lo t t ed   i n   f i gu re  9(a) with the contact  conditions 

l isted  under  run I i n  table I. For this case it i s  evident from f ig -  
ure  g ( a )  t h a t  t he  dynamic-camber solut ion  does  not   di f fer   great ly  from 
the  so lu t ion   for  8 = 0 insofar  as ver t ica l   acce le ra t ion  of t h e   a i r c r a f t  
i s  concerned  but  does  give somewhat d i f f e ren t  rebound ve loc i t i e s  ( e  at 
emergence from the  water) and d r a f t   h i s t o r i e s .  The trimming ve loc i ty  a t  
rebound is a l so  somewhat modified. Comparison wi th  the fixed-trim theory 
indicates,  as expected,  large  errors  in trimming  motion  through  use of the 
fixed-trim  assumption  but shows f o r  this case that  ver t ica l   acce le ra t ions  
of the  center  of gravity  can  be fairly closely  estimated by the fixed- 
t r i m  theory,  whereas  rebound  velocity and draf t   h i s tory  show  some disagree- 
ment wi th  trimming-theory r e s u l t s .  Some of t hese   r e su l t s   a r e  more o r   l e s s  
what would have been  expected  from a short   extrapolation of the  theoret-  
i c a l  and experimental   results  for a nonchine-immersed, trimming f l o a t  
( r e f .  22) into  the  moderately chine-immersed region. In this reference 
a l so ,   the   e f fec t  of  trimming i n  modifying the vertical   center-of-gravity 
accelerations is shown t o   b e  small. 

pgb3 

As the beam loading is  increased s o  that  deeper immersions with 
la rger  wetted-length-beam r a t i o  h, resu l t ,  the  e f f ec t  of ro ta t ion  on 
the   ver t ica lmot ions  was expected to   i nc rease   fo r  a given  pitching moment 
of i n e r t i a   s i n c e  6 is propor t iona l   to  h. This is borne  out i n  the 
so lu t ion   for  a higher beam loading Cn = 16, presented  in   f igure g(b)  
wi th  conditions  at   contact listed under run I1 i n   t a b l e  I. For th i s   case ,  
f igure  9(b) shows tha t  the dynamic-camber solut ion  departs  s t i l l  further 
from the   so lu t ion   for  6 = 0 although the d i f f e rence   i n   t he  maximum 
ver t ica l   acce le ra t ion  of the   cen ter  of gravity is not  appreciable. The 
f ixed-tr im  solut ion  appears   to   give  sat isfactory  resul ts  for this case 
only as a very crude  approximation f o r   t h e   v e r t i c a l  motions after the  
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time  of maximum acceleration. As a matter   of   interest ,  it might  be 
pointed  out   that ,   in  figures g(a) and g(b),   the dynamic-camber scdution 
falls  between the  f ixed-trim  solution and t h e   s o l u t i o n   f o r  6 = 0. 

From figures g ( a )  and g(b)  and the  assumption t h a t   t h e  dynamic-camber 
theory is  va l id  a t  leas t   for   es t imat ing   ro ta t iona l   e f fec ts ,  it might be 
concluded t h a t   t h e  proposed  theory  might be of some va lue   i n  computing 
flying-boat  landing  characterist ics  for  the 'following  cases:  where t h e  
shape of the  load-time  history is  s igni f icant ;  where the  trimming h is tory  
i s  s igni f icant   in   de te rmining   the   in i t ia l   condi t ions  of  subsequent  impacts; 
for  seaplane  porpoising  calculations;   or  possibly  for unsteady, low-aspect- 
ra t io   hydrofoi lmotions  for   both  the  deeply immersed case; and the  case 
where t h e  upper  surface  of  the  foil  may be  unwetted. The poss ib i l i t y  
should  not  be  overlooked  also  that,  for same flying-boat  configurations, 
t he   e f f ec t  of r o t a t i o n  on t h e   v e r t i c a l  motions  might  be  even more s igni f -  
i can t   than   tha t   ind ica ted   in   f igures  g(a)  and g(b)   s ince  the sample cases 
chosen  were selected more o r  less at random and are   not   necessar i ly   typi-  
c a l  of the  worst   cases.  Also t h e  effects of afterbody immersion  and 
aercdynamic moments on t h e   r o t a t i o n a l v e l o c i t y  rnw increase   the   ro ta t iona l  
e f fec ts  on the  pressure  dis t r ibut ion.  (Note t h a t ,   f o r   t h e  sample cases 
of runs I and 11, the   ro ta t iona l   ve loc i ty  at contact io is not  very 
large.)  A s imple  cr i ter ion  for   evaluat ion of t h e  effects of ro t a t ion  is 
the  magnitude of 6 which  can  be  estimated  for  different  hulls and impact 
or  planing  conditions. 

Trimming Shock-Mounted wdro-Ski 

Time-history  solutions  are  presented  in  f igures l O ( a )  and 10(b)  for 
water  impacts of an   a i r c ra f t  equipped  with  pivoted  hydro-skis  with  shock- 
s t ru t   r e s t r a in t .   (See   f i g .   5 (b ) .  ) In these  solutions,   the  following 
assumptions a re  made: t he  ski mass is negl igibly small; t h e   a i r c r a f t  
fuselage  i tself   does   not  trim during  the impact; the  shock-strut  spring 
force is proportional  to  the  telescoping  displacement;   the damping force 
i s  proport ional   to   the  square of the  te lescoping  veloci ty;  and the shock- 
s t r u t  axis remains more o r   l e s s  normal t o   t h e  hydro-ski  keel. 

The so lu t ion   fo r  a moderately  high  hydro-ski beam loading ( C n  x 16) 
with  the  ski  pivot  forward  of  the  shock  strut i s  p lo t t ed   i n   f i gu re  lO(a) 
with  conditions a t  contac t   l i s ted  under  run I11 i n   t h e   t a b l e  of i n i t i a l  
conditions. The forward  pivot  location  type  of  mounting i s  covered by 
the  more general   c lass  of  mountings f o r  which t h e   s k i  t r i m  tends t o  
decrease on contact  with  the  water. The difference between the  dynamic- 
camber solut ion and the   so lu t ion   for  6 = 0 for   the   case  of figure  lO(a) 
i s  seen t o  be   p rac t ica l ly   ins igni f icant .  It probably would not be fa i r  
t o  compare the  solut ions  for   the trimming ski   with  those  for   the  f ixed-  
trim shock-mounted ski since  the  attachment  point  of  the shock s t r u t   t o  
t h e   s k i   f o r   t h e  trimming  case and the  t r im  selected  for   the  f ixed-tr im 
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case   a re   be l ieved   to   be   c r i t i ca l .  In  order   to  make comparisons  between 
these two types of mounting, some ra t iona l  basis of  comparison taking 
into  considerat ion  the  effects  of d i f fe rences   in  the large number of 
existing  independent  variables must first be  evolved. As  a matter of 
interest ,   the   f ixed-tr im  solut ion (same case  but with shock s t r u t  locked 
i n  extended  position) i s  presented  to   indicate   the  degree of load a l l e -  
viat ion  obtainable   for  t h i s  example case with the  shock-mounted trimming 
ski .  

In  figure  10(b ) the   so lu t ion   for   run  IV i n   t a b l e  I which involves 
a very  high beam loading (Ca = 132) and a forward  location  of the s k i  
pivot  point is presented.  For this case,   the  departure of t he  dynamic- 
camber solut ion from the so lu t ion   for  6 = 0 i s  slightly greater   than 
tha t  fo r  figure 10(a)  as would be expected from an examination  of the 
component values of 6 .  The heavier loading of the sk i  i n  run N makes 
for   l a rger  hw which, as f o r  the trimming hul l ,   resu l t s   in   l a rger   va lues  
of 6 .  

Apparently, from figures  lO(a) and 10(b)  for the trimming  hydro-ski 
case with the  forward  pivot  location, the theory  for 6 = 0 may be sub-' 
s t i t u t e d   f o r  the dynamic-camber theory  for  t ime-history  calculations a t  
l e a s t  up t o  the time  of m a x i m u m  acceleration. Comparison in   f i gu re   10 (b )  
wi th  the fixed-trim  solution  (shock  strut  locked  in  the  extended  position) 
again shows the  load reduction  achieved with the trimming shock-mounted 
ski.  For this case,  the  reduction inmaximum load is  considerably  smaller 
than tha t  f o r   t h e   l i g h t e r  beam loading  case of f igure  10( a) ,  whereas the 
r a t i o  between the   f ixed  and trimming  times t o  peak load is greater f o r  
f igure  10(b) .  For both  cases,   the rebound veloci ty  is be l ieved   to   be  
greatly  reduced f o r  the trimming  mounting. 

A further  evaluation  of  the  variation of the  quant i t ies  making up 6 
indicated that,  for  those  cases where the  pivot is behind the shock s t r u t  
or  more generally where the sk i  trim increases on contact, the effect   of 
t r i m i n g  on t h e   v e r t i c a l  motions  might be greater .  An attempt was made 
t o  make a numerical  solution on an electronic  d ig i ta l  computer f o r  this  
case which was unsuccessful  due to   the   choice  of t he  number of s ign i f icant  
f igures   used  in   the computer to   descr ibe  the design  char ts   in  this paper. 
This pa r t  of the  discussion is  therefore  included  to  caution the  user  of 
t h i s  type of computer t o  m a k e  use  of  an  extra number of s ign i f icant  f ig-  
ures   in   the   descr ip t ion  of the  design  char ts   for  cases with aft pivot  
locations.  Although the  preliminary work w i t h  the e l e c t r o n i c   d i g i t a l  
computer indicated that the e f f ec t  of ro ta t ion  on the  loads and motions 
was considerably  increased  for this case,  further  attempts were not m a d e  
t o   o b t a i n  this solut ion  s ince it was thought a t  t h i s   w r i t i n g   t o  be of less 
importance  than runs 111 and N. It is believed  that   numerical   solutions 
for   the   case  of t he  shock-mounted ski pivoted  in   the rear should  not be 
except iona l ly   d i f f icu l t  where the  r ight   choices  of  increment  size and 
number of   s ignif icant   f igures   are  made. 
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The proposed dynamic-camber theory  has  been  derived  primarily  for 
the  analytical   determination of the  loads and motions  of  seaplanes  with 
high length-beam ra t io s ,  shock-mounted hydro-skis and other  bodies 
impacting or  planing on a water  surface  while  undergoing  pitching  rota- 
t ion.  Comparison  of this theory  with  oscil lating wing theory, wi th  some 
low-aspect-ratio  oscillating wing data, with a lower order  unsteady 
planing  approximation  neglecting  the  effects of ro ta t ion  on the  pressure 
d is t r ibu t ion   (e f fec t ive  forward veloci ty   theory) ,  and with  fixed-trim 
impact theory has led  to  the  following  conclusions: 

1. The theo re t i ca l   e f f ec t  of ro ta t iona l   ve loc i ty  on the  longitudinal 
pressure  dis t r ibut ion of a p i t ch ing   f l a t   p l a t e   fo r  an increasing  angle 
of a t tack is  t o  broaden  the  stagnation  peak and decrease  the  instantaneous 
r a t i o  of maximum pressure  ,to  average  pressure, whereas  a decreasing  angle 
of a t tack  yields  the opposite  results.  This ef fec t  i s  probably s ign i f i -  
cant  for  hulls  having  large  bottom  panels  which would have t o  be  designed 
stronger  to  withstand  high  average  pressures  during upward pitching  or 
small  bottom  panels which would have t o  be  strong  to  take  the  high  local 
pressures   in  downward pitching. 

2. For the  low-aspect-ratio  case,  the  proposed  theory,  with  the 
exception of the   sens i t ive  moment phase  angle, is i n   f a i r  agreement with 
Lawrence and Gerber 's three-dimensional,  unsteady,  linearized  airfoil 
theory and with some o s c i l l a t i n g   a i r f o i l  experiments f o r  an aspect   ra t io  
of 2. For the  infinite-aspect-ratio  case,  because of the  lack of incor- 
poration of  a certain  frequency-sensitive  circulation  term  into  the  pro- 
posed theory, it i s  i n   r e l a t i v e l y  poor  agreement with Theodorsen's  exact, 
two-dimensional ( in f in i te   aspec t   ra t io) ,   uns teady ,   l inear ized   a i r fo i l  
theory  for  zero  angle of a t tack.  This circulation  term is apparently 
unimportant  for low aspect   ra t ios .  

3 .  For f ree ly  trimming,  narrow seaplanes,  the dynamic-camber, 
effective-forward-velocity,  or  fixed-trim  theories  give similar values 
of m a x i m u m  acceleration  but,  where accurate  time  histories of t ransla-  
t i ona l  and pitching .motions are  required,   especially  for  the  heavier beam 
loadings, a theory  taking  into  account  the  effects of pi tching  rotat ion 
such  as  the dynamic-camber theory or some equivalent  thereof is probably 
desired. 

4. For trimming  hydro-skis fo r  which the trim decreases on contact 
(pivot  located  forward of the shock s t ru t ) ,   bo th   the  dynamic-camber and 
effective-forward-velocity  theories  give  similar  results. Both theories 
predict  load  reductions  for  the trimming, shock-mounted hydro-ski  over 
the  equivalent  fixed  case  (shock strut locked i n   t h e  extended posi t ion)  
although  for  the  higher beam loading,  the load reduction was smaller  for 
the  cases examined,  whereas the  t ime  to  peak load  was increased  over  the 
fixed  trim  case. 
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5 .  For  low-aspect-ratio  pitching  hydrofoils  either  deeply immersed 
or planing on the   surface,   the  dynamic-camber theory i s  believed t o   o f f e r  
some promise. 

Langley  Aeronautical  Laboratory, 
National  Advisory C m i t t e e   f o r  Aeronautics, 

Langley Field, Va.,  M a y  24, 1956. 
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PRESSURE DISTRDUTION ON A  CAMBERED AIRFOIL AT 

LARGE ANGL;ES OF ATTACK 

This appendix is concerned wi th  the  determination of the  pressure 
d i s t r ibu t ion  on a cambered a i r f o i l  a t  large  angles of a t tack  by means of 
conformal mapping procedures.   This  distribution is required  for  obtaining 
the  loads and moments on such an a i r f o i l .  

The two-dimensional  incompressible  flow  solution f o r  a cambered air- 
f o i l  a t  Oo angle of a t tack  i s  given i n  appendix A of  reference 4. Since 
the present  paper i s  concerned  with  large  angles  of  attack, a similar 
though more general   analysis is required. This solut ion is  developed 
w i t h  the aid of f igure  2 as follows: 

The exact complex potential   for  the  f low  including  circulation  about 
a c i rcular   cyl inder  of radius R fo r  a l l  angles of a t tack  as represented 
by a sec t ion   i n   t he  Z" plane is (see re f .  8, arts. 6.22 and 7.12) 

where a i s  the angle of a t tack  between the veloci ty   vector  U of the 
f l u i d  far from the body and the  negative X " - a x i s  and r i s  a constant 
denoting  the  circulation. 

The c i r c l e   i n  the Z"-plane may be  conformally  transformed  into a 
cambered a i r f o i l  i n   t h e  Z-plane  by first mapping it on the Z'-plane where 
it i s  converted t o  another   c i rc le  of radius R the  center  of  which is  
elevated  in  the Y'-direction a distance h. (See  f ig .  2.)  The converting 
function  required  by this process i s  

where  c/4 i s  the dis tance from t h e   o r i g i n   t o  the intercept  of the c i r c l e  
on the X I - a x i s  and tan 6 = 4,. The c i r c l e  on the  Z'-plane i s  next con- 

ve r t ed   t o  a c i r cu la r - a rc   a i r fo i l  of length c and maximum ordinate 2h 
in   t he  Z-plane  by t h e  Joukowski transformation 

h 

(c/4)2 z = z ' +  
Z '  
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In  order  to  determine the pressure  dis t r ibut ion on th i s   c i rcu lar -a rc  
a i r fo i l ,   t he   ve loc i ty   d i s t r ibu t ion  about it must first be known. Before 
this  velocity  distribution  can  be  determined,  the  circulation  constant I' 
of equation (Al) must first be  determined  with  the  aid of t he  Kutta con- 
d i t ion ,  which predicts  smooth flow at f i n i t e   v e l o c i t y  o f f  t h e   t r a i l i n g  
edge. Thus, the   cmplex   ve loc i ty  dw/dz  must be f i n i t e  at the   po in t  
Z = + i o  i n   t h e  Z-plane  which means t h a t  dw/dZ' = 0 a t  the   po in t  

Z '  = c + i o  in   the  Z ' -plane.  In  other words, a s tagnat ion  point   exis ts  

a t   t he   i n t e rcep t  of t h e   c i r c l e  and the   pos i t ive  X l - a x i s  in  the  Z'-plane.  
Actually a stagnation  point  also exists a t  the  point  Z '  = - f + i o  the  

intercept  of t h e   c i r c l e  and the   negat ive X I - a x i s .  

2 

4 

The complex veloci ty   about   the  c i rc le   in   the  Z ' -plane may be  obtained 
from the  complex ve loc i ty   i n   t he  Z"-plane by, means of the  following 
equation: 

The complex ve loc i ty   i n   t he  Z"-plane i s  obtained by taking  the  der ivat ive 
of equation (AI)  

Since d ~ " / d ~ '  = 
complex ve loc i ty  

wi th  respec t   to  Z" as follows: 

1, 
i n  

a combination  of  equations 
the  Z -plane  which is 

- i r  
Z 

(Ah) and (A?) y ie lds   t he  

ir 
Z -Ti 

to   evaluate   this   expres-  
s ion a t  t h e   t r a i l i n g  edge of t he   a i r fo i l ,   t he   va lue  of Z" a t  the  
stagnation  point Z" = - i€ t a n  6 = Remi6 must be subs t i tu ted   in to  

equation (A6) which then becomes 
4 4  
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Since  the  veloci ty  at a stagnation  point i s  equal  to  zero,   equation (A7)  
is equated t o   z e r o  and yie lds  f o r  the  c i rculat ion  constant  

I+ the   c i rculat ion  constant  is inserted  into  equation (A6) ,  t he  complex 
veloci ty   in   the  Z ' -plane becomes 

The complex ve loc i ty   i n   t he  Z-plane is obtained by means of the  equation 

dw - dw dz' - dw/dz' 
dz dz' dz dz/dz' 
""- 

The expression for dz/d%' is obtained  by  differentiating  the Joukowski 
transformation  (eq. ( A 3 ) )  wi th   respect   to  Z '  which y ie lds  

The general  complex ve loc i ty  of  t h e   f l u i d  about t h e  cambered wing i n   t h e  
Z-plane is obtained  through  combination of equations (Ag), ( A l O ) ,  and 
( A l l )  and gives  the  equation 

? - 
R2 + 2iR s i n ( a  + 6)  Z " aw - 

" 

2 
Z f 2  - (a) dz 

The veloci ty  a t  the  surface of the  airfoilmay  be  determined  through 
subs t i tu t ion  of the  expressions for Z" and Z '  on the  body in to  
equation  (A12). These expressions  in terms of t he  modulus and arguments 
of Z" (R and 9 ,  respect ively)  and the  angle 6 denoting  the camber 
magnitude are 

Z" = Re i e  (A13  1 
and 
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The complex veloci ty  a t  the  a i r foi l   surface  obtained  through  subst i tut ion 
of equations ( A l 3 )  and ( A 1 4 )  and the  expression - cos 6 in to  equa- 

t i o n  (A12) i s  wr i t ten  
E -  

This camplex f lu id   ve loc i ty  may be  subdivided  into i t s  components i n  
the  X- and Y-directions  (u and v, respect ively) ,  by the  equation 

dw " - -u + i v  
dz 

The square of the   resu l tan t   ve loc i ty   vec tor  q is then  obtained  through 

veloci ty  (E) 
of t he  complex velocity  equation ( ~ 1 6 )  by i ts  conjugate 

= -u - i v  as given by the  equation 

This  multiplication is eas i ly  accomplished  through  use  of  the  following 
complex conjugate  relations.  If Ql, Q, and Q3 are   three complex 
quant i t ies  and i f  

aw = QL&2Q3 dZ 

then 

and therefore  equation ( A l 7 )  takes   the form 

q2 = 9p) = ( Q  a ) 
dZ az 1 1 ( Q 2 q  (Q3Q3) 

Thus, q2  may be  obtained from equation ( A l 3 )  by an operation similar 
to   equat ion (A20) with  the  following  result: 
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o r  

4 

q2 = u2. 1 + 2 sin 0 sin 6 + 
cos(; - $) 

The  distribution  of  the  pressure p about  the  cambered  airfoil  may 
be  determined  by  means  of  Bernoulli's  equation  which  for  the  case  of 
steady  motion  with  viscous  and  gravitational  forces  neglected  may  be 
written  as 

where p, and U designate  the  pressure  and  velocity far away  from  the 
body.  The  pressure  far  from  the  body  is  set  equal  to  zero;  this  condition 
allows  equation (A22) to  be  written  in  nondimensional  form  as 

The ratio  of  the  pressure  on  the  body  to  the  stagnation  pressure 
is  then  determined  through  combination  of  equations (A21) and (A23) and 
is written 

7 2  

It is noted  that  this  pressure  ratio  appears  as a function  of  the  vari- 
able 8 which  is a parameter  in  this  analysis  since  the  position  along 
the  airfoil  can also be  obtained  only  as a function  of 8 .  The  X-location 
of the  pressure is determined  through  combination of equations (A3), (A14), 
and  the  well-known  relation Reie = R( cos 8 + i sin 8 ); thus, 
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and,  since - R cos 8, the  real  past  of  this  expression  becomes  in 

dimensionless form 
4- 

x - cos e cos28 
C cos 8 1 + 2 sin 0 sin 8 + sin 8 2 

Thus,  the  pressure  distribution  about  a  two-dimensional  cambered  airfoil 
deeply  immersed  in a fluid  and  at any finite  angle  of  attack  is  given  by 
equations (A24) and (~26) where  potential  flow  may  be  assumed. 
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APPENDIX B 

NACA RM L56E31 

LOADS AND MOMENTS ON A CAMBERED A I R F O I L  OF INFINITE SPAN AT 

FINITE ANGLE OF ATTACK BY BLCISIUS' THEORY 

The loads and moments on a cambered a i r f o i l  might  have  been  obtained 
through  integration of the  pressure  dis t r ibut ion  equat ions (A24) and (A26) .  
It was b e l i e v e d   t o  be simpler, however, to   ob ta in   these   quant i t ies  by 
means of Blasius ' theory   ( re f .  7, art .  7.1 or  ref. 8, ar t .  6.4) by consid- 
ering  the  flow far from the  bo*. 

According to   B las ius ,  i f  the  square  of  the complex velocity  can  be 
expressed by t h e   s e r i e s  

(g )2= ,+$+2+ .  . . 
Z2 

where %, Bl, H2 . . . 
of z (far away from the  
wr i t ten  as 

where D is the  drag and 
about  the  origin  ( located 
MP/b  may be  wri t ten as: 

are independent of Z, 
body)  t he  complex force  

D + i L =  
b b  

then  for  large  values 
on t h e  body may be 

L is the  l i f t .  The two-dimensional moment 
below the  midchord i n   t h e  Z-plane  of f i g .  2) 

where r e f e r s   t o   t h e   r e a l   p a r t  of the  expression. 

In  order t o  obtain dw/dz f o r   t h e  cambered wing in   the  appropriate  
form, equations  (A2), (A3)  ( inverted) ,  (Ajs), and ( A 8 )  are f irst  res ta ted  
as follows : 
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Equation ( A 2 )  transforms  the  symmetrically  located  circle  in  the  Z"-plane 
in to  a displaced  c i rc le   in   the  Z ' -plane  offset   ver t ical ly  upward a dis-  
tance  h.  Equation ( A 3 )  i s  an inverted Joukowski transform which converts 
t he   o f f se t   c i r c l e   i n   t he   Z ' -p l ane   t o  a c i rcu lar   a rc  of length c and  maxi- 
mum height 2h = c t an  6 i n   t h e  Z-plane. The pos i t ive   s ign   for   the  

r ad ica l  was chosen s ince Z and Z '  must both become large far from t h e  
body. Equation ( A 5 )  gives  the  general  complex veloci ty  of t h e   f l u i d  
about   the  c i rc le  of radius R i n   t h e  Z"-plane with  c i rculat ion I? where 
the   resu l tan t   ve loc i ty  of f l u i d  U a t  m i s  inclined a t  an angle a t o  
t h e  X"-axis. 

2 

The expression  for  the complex ve loc i ty   i n   t he  Z-plane  can  be  deter- 
mined from the  complex ve loc i ty   in   the  Z"-plane by use  of   the  re la t ion 

In  order t o  obtain dz"/dz, Z" must first be  expressed as a function 
of Z; this  expression i s  obtained  through a combination  of  equations (A2) 
and ( A 3 )  so t ha t  

If the  negative  root had been  chosen in  equation ( A 3 )  instead of t h e  
pos i t ive  one, then, as Z approaches 03, Z" approaches 0 and t h i s  
condition means that   the   f low  outs ide  the wing would be  transformed t o  
the   ins ide  of the   c i rc le   ins tead  of the  outs ide of t h e   c i r c l e   f o r  which 
the  flow is  defined. The 
therefore  

der ivat ive of Z" with   respec t   to  Z is 

A combination of equations (A5) ,  (a), and (B6) r e su l t s   i n   t he   exp res s ion  

2 ia 
037 1 
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In  order to   ob ta in   the   se r ies   express ion   for  (dw/d!Z)2 required i n  
equation (Bl), t he   s e r i e s  for dw/aZ w i l l  be  Synthesized and then  squared. 
The ser ies  fo r  t he  first bracketed  term fram equation (75%) of r e fe r -  
ence 23 may be  writ ten as 

where (g)2 approaches 0 for  large  values of Z f a r  from the  body, as 

required  by  Blasius'  solution. The ser ies   for  Z" as a  function of Z 
from equation (B5) and equation (753) of reference 23 may be  writ ten 

4 6 
2ih(;f (9," 2 i h ( t )  2(f)  

Z'l2 = z2 - 2ihZ - [h2 + 2( fr] + - - +  
Z 

- 
Z2 z3 24 

+ .  . . 

The ser ies  expansion of dw/dZ may be  synthesized from equations (B7}, 
( B 8 ) ,  (Bg) ,  and (B10) and may be  stated  as 
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which, a f te r   mul t ip l ica t ion  and reduction,  yields  the  equation  for  the 
f i r s t  few terms which a re   a l l   t ha t   a r e   r equ i r ed   i n   t h i s   pape r  

This  expression is squared to   aga in   y ie ld   the  f i rs t  few terms  required 
by the  Blasius '   solution  for  the  square of t he  complex veloci ty  

s ince R = - cos 6 .  A combination  of  equations  (B2) and (B14) y ie lds   the  

two-dimensional l i f t  and drag  forces 
4 
C 

The sect ion l i f t  coeff ic ient   per  unit span i s  therefore 

c l  - - = 2rr(sin a cos a + cos2a  tan 6 )  g( c)u2 

The  moment i s  obtained  in  a similar manner. From equation (B13) t he  
value  of % used in  equations (BL.) and (B3)  i s  

2 
% = -3 - 2 ~ m e - ~ ~  - 2 ~ % ~  + 2u2(:> e-2ia 

The r e a l   p a r t  A of i% is  therefore  

2 /4 i% = -m2(t) s i n  2a + 2~1?1 s i n  a 
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The two-dimensional pitching moment about  the  origin  expressed 
posi t ive  for   increasing a is  therefore  obtained fram combining  equa- 
t ions  (A8), (B3), and (B l9 )  with  expressions R = 

to   yield  the  equat ion 

C 
4 cos 6 6 and h = ' t a n 6  

The section moment coefficient  per unit span  about  the  origin i s  therefore 

In  order  to m a k e  comparisons wi th   t he   t h in   a i r fo i l  low-angle derivation 
in  chapter I1 of reference 9 (see  eq. 10.8 of r e f .  g ) ,  the moment must 
be  taken  about  the  leading edge. An upward pitching moment (Zncreasing 
trim) i s  considered  posi t ive  in   this   report  and negative  in  reference 9 
and thus have opposite  signs. For small angles of attack,  therefore, 
the two-dimensional upward trimming moment about  the  leading edge m a y  be 
s ta ted  for   the  present   der ivat ion 

where r i s  the distance between the  center of pressure and t h e   t r a i l i n g  
edge.  Since, however, the  moment about  the  origin i s  

M~ = - ~ ( g  - r) 
the moment about the  leading edge may be  writ ten 

which, i n  combination w i t h  equations (B15) and (B20), becames 

sin2a  tan 
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The  upward  trimming  section  moment  coefficient  per  unit span about  the 
leading  edge is therefore 
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APPENDIX C 

" H O D S  OF SOLUTION 

NACA RM L36E3L 

General.- The means f o r  making numerical  solutions of the  equations 
f o r  trimming  bodies  and shock-mounted hydro-skis are ou t l ined   i n   t he  
following  procedures.  Step-by-step  processes must be resorted  to,  because 
the  equations do not  lend  themselves to   exp l i c i t   so lu t ion .  Although t h e  
methods suggested depend on l inear   extrapolat ion,  any well-known step- 
by-step  procedures m a y  be  applied. 

Both  example procedures assume the  immersing body t o  be a f l a t  
rectangular   plate .   In   order   to  make solut ions  for   other  bottom  shapes, 
the  theory of references 6 and 18 or  planing  data  obtained  with  the 
body of interest   might   be  ut i l ized  in   judicious  modif icat ions of the. 
char ts  of f igures  6 t o  8 whereas a value  of  the  coefficient B for  average 
angles  of  dead r i se   g rea te r   than   zero  may be  obtained from references 14, 
15, o r  18. The equat ions   in   th i s  appendix  include  terms  representing 
aerodynamic l i f t  and pi tching moment and  hydroQnamic  afterbody moment. 
In  order t o  make f a i r l y  complete solutions by the  proposed methods 
including  the  effects of these  parameters on the   overa l l  hydrodynamic 
motions and loads, it is necessary t o  know the  var ia t ions  of   the  aero-  
dynamic and afterbody  terms  with  impact  geametry  either  theoretically 
or  from experimental  data. Both solutions  presented  here assume t h a t  
both aerodynamic  and  hydrodynamic forces are or iented  essent ia l ly  normal 
t o   t h e   k e e l  and neglect   the   force due to   acce le ra t ion  of t h e   v i r t u a l  
water mass as was done in   reference 18. The shock-mounted hydro-ski 
solution assumes t h a t   t h e  mass and moment of i n e r t i a  of the  hydro-ski 
may be  neglected,  that  exponential damping e x i s t s   i n   t h e  shock s t r u t ,  
and tha t   t he  t r i m  of the   a i rp lane  is constant  during  impact. The water 
r i s e  is taken  into  consideration  only  insofar as it a f fec t s   t he   a r ea  
over  which the  hydrodynamic force   ac t s   whi le   the   ra te  of change of water 
r i s e  as a force  increaser  (see r e f .  17) is neglected. 

The numerical  solutions  are made wi th   the   a id  of f igures  5 t o  8. 
Each t ime-history  abscissa is subdivided  into  equal  time  increments  of 
duration A t  where the  subscr ipt  n - 1 designates  the  values  calcu- 
la ted a t  the  end of  the  previous time increment and n designates  the 
values  being  calculated.  For many applications it is be l ieved   to  be 
advisable t o  select  very  small  increments A t  for   the  first four o r  
f ive  s teps  and larger  increments from there  on. The correct  increment 
s i ze  may be  established by experience  acquired i n  making several  solu- 
t ions   for  a given  problem and using  different  increment  sizes  for  each 
solution. The increment  size may be  increased  unt i l   the   point  is reached 
where the  solut ions  diverge from the  more accurate  curve  obtained  with 
a very small increment  size. If a small-period  oscil lation is present   in  



NACA RM ~ 3 6 ~ 3 1  43 

the  curve,   too  large an  increment s i z e  or t o o  small an increment s i z e  
f o r   t h e  number of s ignif icant   f igures   used  to   def ine  the  design  curves  
is indicated. The f i rs t  point   in   the  t ime-his tory  solut ion i s  determined 
by the   i n i t i a l   cond i t ions  of the  problem. The equations  l isted as com- 
putational  steps  outline  the  arrangement of computation  sheets. The 
values  determined from the  repeated  application of these  equations when 
plot ted  against  t give  the  motions of t he  trimming h u l l  or the   fuselage 
and shock-mounted hydro-ski as the  case may be. For cases where 6 is 
small, it may be taken as zero  in  order t o  simplify  the  calculations.  

Computational  steps fo r  free-to-trim body with f lat  rectangular 
bottom.- The computational  steps  for a free-to-trim body with f l a t  ret- 
tangulax  bottom  are as follows: 

(4 )  zsn = ~ ~ ( ~ - 1 )  + En - zn-1 + E(sin Tn - s i n  ‘rnW1) + J(c0s -rn - cos ~~ -1 )  - 

( 5 )  An = 
sn 

b s i n  -rn 

28. 6 5 i n h b  
in  degrees 

Un 
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dashes i n   f i g .  8) 

or ,  i f  wing l i f t  may be assumed equal  to  the  weight,  

where B = 0.88 (See loop of   short   dashes  in   f ig .  8) 

(18) T~ = 
.. 

or,  i f  the  
the  center  

'n - 
.. - 

r e su l t an t  aerodynamic force may be assumed to  pass  through 
of gravity and to   be   equa l   t o   t he  weight, 

T 
Computational steps f o r  trimming rectangular  flat-bottomed hydro.- 

ski with  shock-strut   res t ra int . -  The computational  steps  for  trimming 
rectangular  flat-bottomed  hydro-ski  with  shock-strut  restraint  are as 
follows: (This method i s  for  appreciable damping only.  For  cases  of 
negl igible  damping on shock-strut  extension  (shock struts with dump 
valves) ,   use   this   procedure  unt i l  T is  
lowing  zero damping procedure  unt i l  z = 

a minimum, then  use  the  fol-  
o again.) 

.. 
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(4) = 'n 
b s i n  T~ 

* 
(12)  ym - - - FNn -I- (Ln - w ) C O S  Tn 

w/g 
o r ,  i f  wing l i f t  may be assumed equal t o  the normal component of the 
weight,  then 

where B = 0.88 (See  loop  of  short  dashes i n   f i g .  8) 
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where K i n   t h i s   c a s e  i s  a general  spring  function  of  P('rn - T ~ ) ,  o r  
for   the   spec ia l   case   o f   l inear   spr ing   force  ( K  = constant)  and turbulent  
damping (d = 2) 

in = ,-p + a z n  + a (Tn - 70 
2 

GP3 _I 

where T~ and T~ are  expressed  in  radians.  These equations  apply  only 
f o r   s t r u t  compression where the  hydro-ski  pivot i s  i n   f r o n t  of the  shock 
strut. For  extension  of  the strut with  this  arrangement  the same equa- 
t ions  apply  with  the  exception  that  G i s  replaced  by -G' which may 
have a different  value.   For  the  case of the  hydro-ski  pivot  behind  the 
shock strut, G i s  replaced by -G and -GI by + G I .  Thus G changes 
s ign when i goes  through  zero. 

o r  more accurately  to  prevent  divergence  caused by small differences 
between in and in-l 

Computational  steps  for trimming rectangulax f l a t  p l a t e  hydro-ski 
with  shock-strut   res t ra int  (zero  damping).- The computational  steps  for 
trirmning rectangular f l a t  p l a t e  hydro-ski  with  shock-strut  restraint 
(zero damping) a re  as follows: 

E ( s in  T~ - s i n  T ~ - ~  ) 



2 8 . 6 5 h b  . 
8, = ( T ~ - ~  + ynWl(At)) i n  degrees 

Un 

or i f  wing 
then, 
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f(k, cgn)  (See loop of long  dashes in   f i g .  8) 

F& + (h - w)cOS T - 
w/g 

l i f t  may be assumed equal   to   the normal component of t he  weight, 

* - -  FNng 
W 
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for the  general  spring  case where K" is  the  inverse  spring  function. 
For the  special   case of the  l inear   spr ing ( K  = constant), 

+ Msn - EFNn 
* 

Tn = TO 
KP2 

where -rn and 'r0 are  expressed i n  radians. 
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TABm I. - INITIAL CONDITIONS OF IMPACT 
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I Configuration 1 Triming hull Shock-mounted 
trFmming ski 

I Run 

[b) f t  . . . . . . . . . . . . . .  
IB . . . . . . . . . . . . . . . .  
ca . . . .  
P, f t  . . .  

G, 

d .  . . . .  
E, f t  . . .  

lb 

f t / sec  2 
- 
I , slug-ft2 
J ,  f t  . . .  
K, l b / f t  . 
u,, f t / sec  
v,, f t /sec 
W, lb . . .  
zo, f t  . . 
zo, f t  . . 
i f t / sec  

- 

- 

a0 ' 

. . . . . . . . . . .  

. . . . . . . . . . .  

. . . . . . . . . . .  

. . . . . . . . . . .  

. . . . . . . . . . .  

. . . . . . . . . . .  

. . . . . . . . . . .  

. . . . . . . . . . .  

. . . . . . . . . . .  

. . . . . . . . . . .  

. . . . . . . . . . .  

. . . . . . . . . . .  

. . . . . . . . . . .  

. . . . . . . . . . .  
- io, f t / sec  . . . . . . . . . . .  
p ,  deg . . . . . . . . . . . . .  
70J deg . . . . . . . . . . . . .  
kao, f t /sec . . . . . . . . . . .  
I,, f t / sec  

yo , ft /sec2 . . . . . . . . . .  
- 

1 ik , ft /sec2 . . . . . . . . . .  
I € . . . . . . . . . . . . . . . .  
p , slug-ft3 . . . . . . . . . . .  
-r0, deg . . . . . . . . . . . . .  
io, radian/sec . . . . . . . . .  
yo, radian/sec2 . . . . . . . . .  

I 

10 
0.88 
1.98 

5 """"_ 
1,600,000 

14.7 

""""_ 
0 """"_ 

22.2 
0 

9.48 """"_ 
34.9 

0 

""""_ 
0.592 
I. 938 

5-7 
-0.087 

0 

I1 

5 
0.88 
15 *9 

""""- """"_ 
5 """"_ 

1,600 , 000 
14.7 

135 
123 , 500 """"_ 

0 """"_ 
22.2 

0 
9.48 """"_ 
34.9 

I 
0 

""""_ 

0 

I11 

2 
0.88 

16.26 
2 
10 
15 

4 12 

""e 

""_ 
8 J 250 

0 
""- 

""_ 
0 

6.06 

57.9 
""e 

""_ 
0 

2.23 
1.938 

15 
0 

0 

Iv 

1 
0.88 

13 2 
2 
LO 
15 

412 

""_ 

""_ 
8,250 

0 
""- 

17 
""- 

0 
6.06 

57-9 
""_ 
-"" 

0 

2.23 

1.938 
15 
0 

0 
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(a) Rotating  plate  in  stream. 

a * 10' 

6 = .1 

- - c/2 

(b)  Equivalent cambered p la te   in  stream. 

Figure 1. - Shape of cambered boundary. 



Ztl-plane 1 -plane Z-plane 

Figure 2.- Conformal transformation  of a circle  into a circulu-ac 
airfoil. 
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Fractional effective chord, - 5 
'e 

NACA RM ~ 5 6 ~ 3 1  

Fractional effective chord , 5 

Figure 3 . -  Variation of lower  surface-pressure  coefficients  with 
f r ac t iona l   e f f ec t ive  chord for two-dimensional cambered p l a t e s  
having a wide range of  camber 6. 
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o .I .2 .3 .l, .5 .6 .7 .8 .9 1.0 

Fractional  effective chord - r 
' 'e 

0 .1 .2 .3 .L .5 .6 .7 .8 .9 1.0 

Fractional  effective chord , A 
ce 

Fractiondl effective chord , $ 

Figure 3 . -  Concluded. 
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3.c r 
- 0 Exprimental   data  for  aspect   rat io  of 2 

2.5 - 

Proposed  theory  (two-dimensional) 
2.c 

t 

Low-aspect-ratio  theory  (ref. 13) 9"" 

-Proposed  theory  (three-dimnsional) 

0 .2 .& .6 .e 1.0, 
Reduced-frequency  paraneter, k 

F 
* -  .- 

, 
Low-aspect-ratio  theory  (ref. 13) I 

I 
/ 

/ 

LC Proposed theory { t h - e e - d i i r e n s i o n a l v  two dhens iona l  / / 

/ 

I4 

d 
M i 

-e 
L 

0 
0 

v / 
\ L /  I I I I I I 1 I I 

.2 .& .6 .e 1.0 

/ 

0 
- 

Xeduced-frequency  paraimter, k 

(a)  Variation  of  oscillating  lift  vector  with (b) Variation  of  lift  vector  phase angle with 
reduced-frequency  parameter. reduced-frequency  parameter. 

Figure 4.- Comparison  of  theoretical  and  experimental  lift  vectors  and  phase  angles for 
an  oscillating  airfoil  immersed  in  an  air  stream. 



'"r Proposed theory (two- dimensional)^ 

t E Low-aspect-ratio t h e o v   ( r e f .  13) 

.3- 0 0 0  
P 0 0 O 0 0""- "" 

0 o& wo-D-Q"-B 
L( Q O  
0 .2- z%i&w 0 
d 

0 0  
Proposed theory  (three-dimnsional) 

0 

t 
I I I I I I 

0 .2 .Ir .b .e 1.c 
Reduced-frequency parameter, k 

0 Experimental  data for aspect  ratio of 2 

10 

qm = 0 Proposed theory (two-dim:nsional 
three-dlnenslonal 

I Two-dimensional theo ry  ( re f .  5 ) J  

-3G t 
I I I I I I 

.2 .I: .6 .e 1.0 
Reduced-frequency paramter,  k 

(c) Variation of oscillating moment vector (d) Variation of moment vector phase angle  with 
with reduced-frequency parameter. reduced-frequency parameter. 

Figure 4.- Concluded. 
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I L a t  time of contact 
Center- of- gravity  level 

(a) Narrow trimming hull. 

- 
;c 

1 

(b)  Shock-mounted hydro-skis. 

Figure 5.- Geometric re la t ions  of trimming  bodies  during water impact. 
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0 1 2 3 4 
Wetted  length-beam ra t io ,  X, 

Figure 6.- Variation due t o  water rise of r a t i o  of wetted  length t o  beam 
f o r  a f l a t  plate.  
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Figure 7.- Variation  of  two-dimensional  normal-force and center-of-pressure  coefficients on the 
lower  surface  of  a  cambered  plate  with trim I- and  effective  camber 6. 
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Figure 8.- Variation of planing  normal-force  coefficient on the  level  
surface of a f l a t  rectangular  plate  with trim and  wetted-length- 
beam r a t i o  hw. 
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Proposed theory (6 varies) 
”” Effective forward velocity theory ( 6  = 0) 
”_ Fixed trim theory (G = 0) 

00 ““ 

\ 

I I 

.2 .h .6 .8 
Time t, See 

(a) R u n  I. 

1 I I I I I I I I 

0 .2 .It .6 .8 
Time t, sec 

Figure 9.- Comparison of approximate  theories  for c.omputing motion-time 
h i s to r i e s  of freely trimming, narrow flying  boats  during  water  impact. 
For i n i t i a l   cond i t ions  see table I. 
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-0 

0 .h .0 1.2 1.6 
Time t, sec 

Proposed theory (6 varies) 
"" Effective forward velocity theory (6 0 )  
_" Fixed-trim theory (T 0) 

-2 L 
.6 

o b  

.2 

0 

-.2 I I I I I I , I  I 

I I I I I I I I 
0 .Ir .a 1.2 1.6 

Time t, sec 

(b) Run 11. 

Figure 9.- Concluded. 
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I I I I  I l l  I I 

Dynamic-camber theory (6 varies) 
" - "_ Effective forward ve1ocit.y  theory 

cu "- Fixed-trim  theory (+ :: 01 

e r  . , 0 
0) 10 

(6 = 0) 

-1 16 

\ -  
r 

0 0 Oh .08 * 12  16 d 
Time, t ,  sec 

I I  I I I I  I I 

. Oh .08 .12  .16 
Time, t, sec 

(a)  R u n  111, forward  pivot  location. 

Figure 10.- Comparison of approximate  theories f o r  computing motion-time 
his tor ies   during water impacts of a i r c r a f t  equipped  with trimming, 
shock-strut-mounted  hydro-skis. For in i t ia l   condi t ions   see  table I. 

-- ... . ._ 



Dynamic-camber theory ( 6  varies) 

Fixed-trim theory (z = 0 )  
”” - Effective forward velocity theory ( 6  = 0) 
” - 

- /- . 
\ 

0 
W 
m 

” 

/’ 

/’ 

I J 

0 .OO .16 -24 032 
Time, t, sec 

0 .OO .16 .24 -32 
Time, t, sec 

(b) R u n  IV, forward  pivot  location. 

Figure 10. - Concluded. 

N.4CA - Langley Fleld. Va. 



' /  


